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ABSTRACT
Simplified models of CO2 plume dynamics are needed for a 
certification framework for geological CO2 storage. 3D 
simulations of buoyancy driven flow were conducted. We 
characterized the effect of reservoir and operating parameters on 
three response variables—time for plume to reach top seal, 
maximum lateral extent, and total mobile gas in reservoir—that 
affect risk of leakage. 
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OBJECTIVES
• Development of simple and transparent framework acceptable to key 

stakeholders for evaluating the risk of CO2 leakage on resources and 
environment

• Developing scenarios for the most likely reservoir types to be used for CO2
storage, modeling and simulation of the scenarios and calculating the 
associated risks

• Deep saline aquifers are primary focus because the range of behavior, 
parameters, and operating conditions is relatively simpler
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CONCLUSIONS
• Certification framework provides simple guidelines  to follow 

while commissioning or decommissioning a geological site for 
CO2 sequestration

• Operating parameters need to be decided based on 
requirements and their effects

• To some extent, inhomogeneous systems can be replaced by 
equivalent homogeneous systems
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RANGE OF INPUT PARAMETERS FOR FRAMEWORK SIMULATIONS
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• Simulations carried out 
for these combination of 
parameters and their 
ranges

• Parameter ranges cover 
most of the potential CO2

storage aquifers
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BACKGROUND
A critical requirement for large-scale deployment of CO2
sequestration in brine formations is a framework for certifying 
and decommissioning sites. As part of the development of such a 
framework, we are developing simple models and conducting a 
series of simulations to evaluate ranges of CO2 plume behavior. It 
is crucial that the framework be simple and transparent, so we 
seek the simplest possible description of the key mechanisms.

PLUME MOVEMENT IN DIPPING RESERVOIR

Flux Ratio in Dipping Reservoirs
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• More lateral movement in updip direction
• More trapping due to larger movement

* Time to hit top seal, years

610.004580.01

330.007320.03L = 1750 ft, h = 17.5 ft, 
H = 100 ft

730.003690.01

400.006380.03L = 2750 ft, h = 17.5 ft, 
H = 100 ft
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Simulations and Model

EQUIVALENT HOMOGENEOUS MEDIUM TO ACCOUNT FOR SHALE BARRIERS
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Equivalent Medium Predicts Time to Reach Top Seal

Sand kv/kh
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(kv/kh)’~f(kv/kh, L, H, Δρ)
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• The tortuous path of a buoyant plume around series of shale 
barriers to vertical movement can be replaced by equivalent 
homogeneous path having equivalent permeability anisotropy

• The equivalent model for time to reach the top seal is shown here:

where 
• H is the height of top seal from perforation
• h is the height of shale barrier from perforation
• L is the half length of shale barrier
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RISK REDUCTION WITH HORIZONTAL WELL vs. VERTICAL WELL

Horizontal wellVertical Well

• The effect of horizontal well vs. vertical well on 
response variables depends upon horizontal 
length, vertical permeability, and injection rate 

• Distribution of total flow along greater horizontal 
lengths reduces the plume velocity; it increases 
CO2 contact with brine and rock compared to 
vertical well, increasing trapping

• On the other hand, due to lower velocity (higher 
gravity number), gravity force dominates and the 
flow is almost vertical, thus contacting less 
brine/rock in horizontal direction

OPTIMUM PERFORATION INTERVAL

• To determine Pwt , pressure at well top:
– Start with Pwt > Prt and calculate z
– Calculate Qt
– If Qt < rate of injection, increase  to next higher step and 

repeat steps 1 and 2; if Qt > rate of injection, decrease to a 
lower value and repeat earlier steps.

• After a small time period, saturation around well is 
calculated from the amount of CO2 injected in incremental 
volume

• Relative permeability and density of reservoir fluid is 
updated and again the above procedures are followed

• The optimum perforation can now be perforated at bottom of 
reservoir increasing the distance of top perforation from top 
seal
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• Given CO2 injection rate and aquifer kh, 
what perforated interval gives longest 
time to reach top seal?

• Difference between hydrostatic gradient 
in well and in reservoir leads to non-
uniform distribution of injected CO2
along the perforated interval.

• At start of injection if H > z (depth at 
which the pressure curves intersect), all 
the perforations are active
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